Step of Proof: p-conditional-domain
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
p-conditional-domain
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
(
B
+ Top)
4.
g
:
A
(
B
+ Top)
5.
x
:
A
6.
isl(if isl(
f
(
x
)) then
f
(
x
) else
g
(
x
) fi )
7.
(
isl(
f
(
x
)))
isl(
g
(
x
))
latex
by ((SplitOnHypITE (-2))
CollapseTHEN (Auto
))
latex
Co
.
Definitions
P
Q
,
left
+
right
,
s
~
t
,
SQType(
T
)
,
{
T
}
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
x
:
A
B
(
x
)
,
P
Q
,
False
,
,
s
=
t
,
,
b
,
t
T
,
A
,
b
,
x
:
A
.
B
(
x
)
Lemmas
bool
cases
,
eqtt
to
assert
,
bool
sq
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
,
bool
wf
,
assert
wf
,
bnot
wf
,
not
wf
origin